Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl a-L-rhamnosyl- $(1 \rightarrow 2)[a$ -Lrhamnosyl- $(1 \rightarrow 3)]$ -a-L-rhamnoside pentahydrate: synchrotron study

Lars Eriksson^a* and Göran Widmalm^b

^aDepartment of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, and ^bDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

Correspondence e-mail: lars.eriksson@mmk.su.se

Received 8 June 2012; accepted 16 June 2012

Key indicators: single-crystal synchrotron study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.087; data-to-parameter ratio = 7.7.

The title hydrate, $C_{19}H_{34}O_{13}$, $5H_2O$, contains a vicinally disubstituted trisaccharide in which the two terminal rhamnosyl sugar groups are positioned adjacent to each other. The conformation of the trisaccharide is described by the glycosidic torsion angles $\varphi 2 = 48 (1)^\circ$, $\psi 2 = -29 (1)^\circ$, $\varphi 3 = 44 (1)^\circ$ and $\psi 3 = 4 (1)^\circ$, whereas the $\psi 2$ torsion angle represents a conformation from the major state in solution, the $\psi 3$ torsion angle conformation may have been caught near a potential energy saddle-point when compared to its solution structure, in which at least two but probably three conformational states are populated. Extensive intermolecular $O-H \cdots O$ hydrogen bonding is present in the crystal and a water-containing channel is formed along the *b*-axis direction.

Related literature

For a description of L-rhamnose as part of polysaccharides, see: Marie *et al.* (1998); Perry & MacLean (2000). For a description of the conformational dynamics of the title trisaccharide, see: Eklund *et al.* (2005); Jonsson *et al.* (2011). For a description of the puckering analysis of the residues, see: Cremer & Pople (1975). For further background to L-rhamnose, see: Ansaruzzaman *et al.* (1996); Varki *et al.* (1999); Kulber-Kielb *et al.* (2007); Lindberg (1998); Säwén *et al.* (2010).

Experimental

Crystal data $C_{19}H_{34}O_{13}.5H_2O$ $M_r = 560.54$ Monoclinic, C2 a = 19.345 (3) Å b = 6.4870 (13) Å c = 21.145 (3) Å $\beta = 97.617$ (14)°

Data collection

```
Bruker SMART 1K CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
T<sub>min</sub> = 0.97, T<sub>max</sub> = 0.99
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.087$ S = 1.072906 reflections 376 parameters 16 restraints $V = 2630.0 \text{ (8) } \text{Å}^{3}$ Z = 4Synchrotron radiation $\lambda = 0.8970 \text{ Å}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 100 K $0.20 \times 0.05 \times 0.01 \text{ mm}$

17172 measured reflections 2906 independent reflections 2655 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.56~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.29~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
OW1-H101O33 ⁱ	0.88 (3)	1.85 (3)	2.726 (2)	176 (2)
$OW1-H102\cdots OW3^{ii}$	0.88 (3)	1.95 (3)	2.802 (2)	162 (2)
$OW1-H102\cdots O32^{iii}$	0.88 (3)	2.55 (3)	2.976 (2)	110 (2)
$OW2-H201\cdots O12^{iv}$	0.88 (3)	2.03 (3)	2.875 (2)	163 (2)
OW2−H202···O35 ⁱⁱ	0.87 (3)	2.08 (3)	2.877 (2)	153 (2)
OW3−H301···OW5	0.88 (3)	2.04 (3)	2.845 (2)	151 (2)
$OW3-H302\cdots O13^{v}$	0.88 (3)	1.96 (3)	2.836 (2)	176 (2)
OW4−H401···OW3	0.88 (3)	1.97 (3)	2.840 (2)	168 (2)
OW4−H402···OW1	0.88 (3)	1.92 (3)	2.771 (2)	160 (2)
OW5−H501···O33 ^{vi}	0.87 (3)	2.07 (3)	2.918 (2)	168 (2)
OW5−H502···OW5 ^{vii}	0.87 (3)	2.50 (3)	3.333 (2)	159 (2)
$O12-H12A\cdots O32^{iii}$	0.84	2.01	2.767 (2)	149
$O13-H13A\cdots O15^{ii}$	0.84	2.10	2.858 (2)	149
$O14-H14A\cdots O24^{iii}$	0.84	1.95	2.733 (2)	157
$O24-H24A\cdots OW2$	0.84	1.88	2.722 (2)	176
$O32-H32A\cdots OW5^{viii}$	0.84	2.13	2.864 (2)	146
$O33-H33A\cdots O34^{i}$	0.84	1.91	2.684 (2)	152
O34−H34A····OW4	0.84	1.86	2.687 (2)	168

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + 1$; (ii) x, y - 1, z; (iii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (v) x, y + 1, z; (vi) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (vii) -x + 2, y, -z + 1; (viii) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

organic compounds

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *PLATON* (Spek, 2009).

This work was supported by a grant from the Swedish Research Council (VR).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6841).

References

Ansaruzzaman, M., Albert, M. J., Holme, T., Jansson, P.-E., Rahman, M. M. & Widmalm, G. (1996). *Eur. J. Biochem.* 237, 786–791.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Eklund, R., Lycknert, K., Söderman, P. & Widmalm, G. (2005). J. Phys. Chem. B, 109, 19936–19945.
- Jonsson, K. H. M., Pendrill, R. & Widmalm, G. (2011). Magn. Reson. Chem. 49, 117–124.
- Kulber-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. (2007). *Carbohydr. Res.* **342**, 643–647.
- Lindberg, B. (1998). *Polysaccharides*, edited by S. Dumitriu, pp. 237–273. New York: Marcel Dekker.
- Marie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378–381.
- Perry, M. B. & MacLean, L. (2000). Eur. J. Biochem. 267, 2567-2572.
- Säwén, E., Massad, T., Landersjö, C., Damberg, P. & Widmalm, G. (2010). Org. Biomol. Chem. 8, 3684–3695.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. & Marth, J. (1999). Editors. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press.

supplementary materials

Acta Cryst. (2012). E68, o2221-o2222 [doi:10.1107/S1600536812027390]

Methyl α -L-rhamnosyl- $(1 \rightarrow 2)[\alpha$ -L-rhamnosyl- $(1 \rightarrow 3)]$ - α -L-rhamnoside pentahydrate: synchrotron study

Lars Eriksson and Göran Widmalm

Comment

In carbohydrate structures from humans the number of different monosaccharides is quite limited; typically seven different sugars are present in glycoproteins and glycolipids (Varki *et al.*, 1999). Constituents of polysaccharides in man add a few more monosaccharides to the repertoire. In bacteria, however, more than 100 different monosaccharide components have been found (Lindberg, 1998). One of them, *L*-rhamnose (6-deoxy-*L*-mannose) is present as a major constituent of the O-antigen polysaccharides from Shigella flexneri (Kulber-Kielb *et al.*, 2007) and is the sole monosaccharide in the repeating unit of an O-antigen from a Klebsiella pneumoniae strain (Ansaruzzaman *et al.*, 1996). *L*-rhamnose is also found a the branch point sugar in some polysaccharides, *e.g.*, from *Escherichia coli* O139 (Marie *et al.*, 1998) and Yersinia enterocolitica serotype O:28 (Perry & MacLean, 2000).

In the title compound (I) the three sugar components are all *L*-rhamnose residues having the α -anomeric configuration. The *O*-methyl residue (*a*) is vicinally disubstituted at O2 (residue b) and O3 (residue c) which leads to spatial proximity of also the two latter rhamnosyl groups. The major degrees of freedom in trisaccharide (I) are present at the $(1 \rightarrow 2)$ - and $(1 \rightarrow 3)$ -linkages, *i.e.*, between residues b and a as well as between residues c and a, respectively. The torsion angles are given by $\varphi 2 = 48^\circ$, $\psi 2 = -29^\circ$, $\varphi 3 = 44^\circ$ and $\psi 3 = 4^\circ$. In a recent NMR and molecular dynamics (MD) simulation study of (I) in water solution $\langle \varphi \rangle \approx 40^\circ$, when the *exo*-anomeric conformation was populated, but non-*exo* conformations with $\varphi < 0^\circ$ were also significantly populated (Eklund *et al.*, 2005). The dynamics of the ψ torsion angles were found to be highly correlated with both $\psi 2$ and $\psi 3$ being either $> 0^\circ$ or $< 0^\circ$. The conformation of the X-ray structure (Figure 1) is reminiscent of the conformational states found from the MD simulation and the values of the glycosidic torsion angles are observed to correspond to conformational regions that are highly populated, albeit the ψ torsion angles in the solid state structure deviate somewhat from the pattern observed from the molecular simulations with water as a solvent.

In studies of the conformational dynamics of the title trisaccharide *trans*-glycosidic heteronuclear carbon-proton coupling constants were measured (Eklund *et al.*, 2005; Jonsson *et al.*, 2011) which, when interpreted by Karplus-type relationships (Säwén *et al.*, 2010), can yield information on conformation *via* torsion angles at the glycosidic linkages. Calculation of the three-bond coupling constants based on the torsion angles in the crystal structure of the trisaccharide showed that for the φ torsion angles and the ψ torsion angle at the α -(1 \rightarrow 2)-linkage the differences to the experimental data were not larger than *ca* 0.5 Hz, indicating that for these torsions the conformation in the solid state is similar to that populated to a large extent in solution. However, for the ψ torsion angle at the α -(1 \rightarrow 3)-linkage the corresponding difference was larger, *ca* 1 Hz, suggesting that in the crystal structure the latter torsion describes a conformation that is less populated in water solution. The crystal structure conformation is still, however, one in a low potential energy region, since conformational exchange occurs for both of the ψ torsion angles between states for which ψ takes either positive or negative values according to the molecular dynamics simulation (Eklund *et al.*, 2005).

The calculated Cremer & Pople (1975) parameters for the three different rings are: ring O15 \rightarrow C15 [Q=0.570 (2) Å, θ =177.9 (2) ° and φ =20 (9) °], ring O25 \rightarrow C25 [Q=0.580 (2) Å, θ =171.4 (2) ° and φ =72.5 (14) °] and for the ring O35 \rightarrow C35 [Q=0.582 (2) Å, θ =177.1 (2) ° and φ =131 (5) °].

Extensive water-water hydrogen bonding was observed (Table 1) between the title compound and water molecules leading to a water channel in the b-direction (Fig. 2 and Fig. 3). The title compound showed hydrogen bonds to water and to other adjacent (symmetry related) trisaccharides, but no intra-molecular hydrogen bonds were found.

Experimental

The synthesis of (I) was described by Eklund *et al.* (2005) in which all three rhamnosyl residues have the *L* absolute configuration. The trisaccharide was crystallized at ambient temperature by slow evaporation from a mixture of water and ethanol (1:1). The crystal was mounted in a capillary tube and diffraction data were collected at 100 K on beamline I711 at the Swedish synchrotron radiation facility, MAXLAB, Lund.

Refinement

All hydrogen atoms, except those on the water molecules, were geometrically placed and constrained to ride on the parent atom. The C—H bond distances are 0.98 Å for CH₃, 0.99 Å for CH₂, 1.00 Å for CH. The O—H bond distance is 0.84 Å for OH groups. The $U_{iso}(H) = 1.5 U_{eq}(C,O)$ for the CH₃ and OH while it was set to 1.2 $U_{eq}(C)$ for all other H atoms. Due to the abscence of significant anomalous scatterers, the value of the Flack parameter was not meaningful, thus the 3220 Friedel equivalents were included in the merging process (MERG 4 in *SHELXL*). The absolute configuration of each sugar residue is known from the starting compounds used in the synthesis. The hydrogen atoms of the water molecule were located from difference density map, given $U_{iso}(H) = 1.5U_{eq}(O)$ and in the refinement the d(O—H) and d(H..H) were restrained to retain the previously known geometry of the water molecule. The H502 is an hydrogen atom connected to a solvent water molecule where the H502 related by a 2 fold axis will be positioned at a much too close distance. The water molecule defined by OW5, H501 and H502 do not strictly fulfil the crystallographic symmetry of the rest of the strucutre, at least this is true for one of the H atoms for this very water molecule.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

A view of the molecule with displacement ellipsoids drawn at the 50% probablity level.

Figure 2

Four unit cells viewed along the b axis with the water molecules symbolized by the large blue discs. The water molecules mediate intermolecular hydrogen bonds between the sugar molecules and along the b axis.

Figure 3

Stereoview of the hydrogen bonded water structure of approximately two unit-cell lengths along the b axis. The water O atoms are shown with blue color and the hydroxyl O atoms are shown with red color.

Methyl α -*L*-rhamnosyl- $(1 \rightarrow 2)[\alpha$ -*L*-rhamnosyl- $(1 \rightarrow 3)]$ - α -*L*-rhamnoside pentahydrate

Crystal data	
$C_{19}H_{34}O_{13}$ ·5 H_2O	V = 2630.0 (8) Å ³
$M_r = 560.54$	Z = 4
Monoclinic, C2	F(000) = 1208
Hall symbol: C 2y	$D_{\rm x} = 1.416 {\rm ~Mg} {\rm ~m}^{-3}$
a = 19.345 (3) Å	Synchrotron radiation, $\lambda = 0.8970$ Å
b = 6.4870 (13) Å	Cell parameters from 963 reflections
c = 21.145 (3) Å	$\theta = 2.5 - 39.8^{\circ}$
$\beta = 97.617 \ (14)^{\circ}$	$\mu = 0.22 \mathrm{~mm^{-1}}$

T = 100 KPlate, colourless

Data collection

Bruker SMART 1K CCD diffractometer Radiation source: Beamline I711, Maxlab Silicon monochromator Detector resolution: 10 pixels mm ⁻¹ ω scan at different φ Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2002) $T_{min} = 0.97, T_{max} = 0.99$	17172 measured reflections 2906 independent reflections 2655 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 34.1^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -23 \rightarrow 24$ $k = -8 \rightarrow 8$ $l = -23 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.087$ S = 1.07 2906 reflections 376 parameters 16 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0607P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$ $\Lambda_{o} = -0.20 \text{ o} \text{ Å}^{-3}$

 $0.20 \times 0.05 \times 0.01 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
OW1	0.93266 (10)	-0.3863 (3)	0.46456 (9)	0.0236 (4)	
H101	0.9098 (15)	-0.456 (4)	0.4905 (12)	0.035*	
H102	0.9424 (17)	-0.474 (4)	0.4352 (12)	0.035*	
OW2	0.55372 (9)	-0.3755 (3)	0.25876 (10)	0.0244 (4)	
H201	0.5191 (11)	-0.458 (4)	0.2626 (15)	0.037*	
H202	0.5911 (10)	-0.422 (5)	0.2816 (14)	0.037*	
OW3	0.93523 (9)	0.2971 (3)	0.37476 (9)	0.0213 (4)	
H301	0.9740 (11)	0.225 (5)	0.3809 (13)	0.032*	
H302	0.9301 (15)	0.339 (5)	0.3350 (8)	0.032*	
OW4	0.85929 (11)	-0.0490 (3)	0.41056 (10)	0.0321 (5)	
H401	0.8879 (15)	0.052 (4)	0.4032 (17)	0.048*	
H402	0.8891 (14)	-0.133 (4)	0.4327 (16)	0.048*	
OW5	1.04589 (10)	0.0556 (3)	0.43863 (9)	0.0271 (4)	

H501	1.0791 (14)	0.144 (5)	0.4484 (14)	0.041*
H502	1.0265 (15)	0.022 (5)	0.4722 (11)	0.041*
C11	0.85217 (11)	-0.0103 (3)	0.23565 (11)	0.0109 (5)
H11	0.8527	0.0985	0.2692	0.013*
C12	0.88270 (11)	-0.2061 (3)	0.26740 (11)	0.0116 (5)
H12	0.8528	-0.2573	0.2992	0.014*
C13	0.88938 (12)	-0.3693 (3)	0.21708 (11)	0.0126 (5)
H13	0.8419	-0.4074	0.1957	0.015*
C14	0.93200 (12)	-0.2870 (3)	0.16795 (11)	0.0116 (5)
H14	0.9806	-0.2587	0.1886	0.014*
C15	0.89936 (12)	-0.0874 (4)	0.13897 (11)	0.0121 (5)
H15	0.8521	-0.1181	0.1157	0.014*
015	0.89286 (8)	0.0599 (2)	0.18944 (7)	0.0107 (3)
012	0.94950 (8)	-0.1441 (2)	0.29873 (8)	0.0133 (4)
H12A	0.9670	-0.2405	0.3221	0.020*
013	0.92191 (9)	-0.5475(3)	0.24839 (8)	0.0174 (4)
H13A	0.9233	-0.6427	0.2217	0.026*
014	0.93366 (8)	-0.4346(3)	0.11879 (8)	0.0155 (4)
H14A	0.9728	-0.4926	0.1230	0.023*
C16	0.94325(14)	0.0139(4)	0.09399(12)	0.029
H16A	0.9205	0.1412	0.0771	0.029*
H16B	0.9485	-0.0801	0.0586	0.029*
H16C	0.9893	0.0465	0.1169	0.029*
C21	0.74537(12)	0.0405 0.1967 (4)	0.12541(11)	0.02°
H21	0.7951	0.1907 (4)	0.1173	0.0155 (5)
C22	0.74289(11)	0.1369 (3)	0.19460 (11)	0.010
H22	0.7628	0.2513	0.2231	0.0109 (0)
022	0.78200 (8)	-0.0481(2)	0.2251 0.21047(7)	0.015
C23	0.76200(0) 0.66745(11)	0.0401(2) 0.0994(3)	0.21047(7)	0.0100(5)
H23	0.6417	0.0994 (3)	0.20510 (11)	0.0105 (5)
C24	0.0417 0.63267(11)	-0.0554(4)	0.1980 0.15733(11)	0.013
C24 H24	0.6584	-0.1893	0.15755 (11)	0.0120(3)
C25	0.0384 0.63456(12)	0.1393	0.1013	0.014
U25	0.03430 (12)	0.0347 (4)	0.09175 (11)	0.0147(3)
П23 022	0.0113	0.1750	0.0690	0.018°
023	0.00298 (8)	-0.0850(2)	0.20878(7) 0.16692(8)	0.0111(3)
024	0.30178 (8)	-0.0839 (3)	0.10082 (8)	0.0131(4)
П24А 025	0.3000	-0.1/00	0.1900	0.025
025	0.70645 (8)	0.0599 (3)	0.08200(8)	0.0150 (4)
C26	0.59920 (13)	-0.0981 (5)	0.03875 (12)	0.0228 (6)
H26A	0.6034	-0.0334	-0.0024	0.034*
H26B	0.5498	-0.1132	0.0436	0.034*
H26C	0.6213	-0.2342	0.0406	0.034*
027	0.72203 (9)	0.4015 (2)	0.11823 (8)	0.0160 (4)
C27	0.74020 (15)	0.4932 (5)	0.06129 (14)	0.0277(6)
H2/A	0.7895	0.4660	0.0581	0.042*
H27B	0.7324	0.6423	0.0625	0.042*
H2/C	0./112	0.4341	0.0242	0.042*
C31	0.62082 (12)	0.1575 (4)	0.30105 (11)	0.0110 (5)
H31	0.5776	0.1923	0.2715	0.013*

H36C	0.7281	0.5980	0.4044	0.028*	
H36B	0.8023	0.4985	0.3969	0.028*	
H36A	0.7546	0.5910	0.3359	0.028*	
C36	0.75423 (13)	0.5176 (4)	0.37637 (12)	0.0187 (5)	
H34A	0.7898	0.0805	0.4488	0.024*	
O34	0.76396 (8)	0.1594 (3)	0.46677 (8)	0.0157 (4)	
H33A	0.6805	-0.1388	0.4838	0.020*	
O33	0.64458 (8)	-0.1032 (2)	0.45946 (8)	0.0133 (4)	
H32A	0.5645	0.2558	0.4037	0.019*	
O32	0.54699 (8)	0.1518 (3)	0.38395 (8)	0.0126 (3)	
O35	0.65577 (8)	0.3437 (2)	0.32144 (7)	0.0117 (3)	
H35	0.7515	0.2194	0.3422	0.013*	
C35	0.72015 (12)	0.3104 (3)	0.36380 (11)	0.0111 (5)	
H34	0.6719	0.2960	0.4460	0.013*	
C34	0.70281 (12)	0.2040 (3)	0.42416 (11)	0.0108 (5)	
H33	0.6966	-0.0894	0.3854	0.013*	
C33	0.66440 (12)	0.0023 (3)	0.40588 (11)	0.0106 (5)	
H32	0.5808	-0.0956	0.3422	0.013*	
C32	0.60030 (11)	0.0409 (4)	0.35762 (10)	0.0110 (5)	

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U ¹³	U^{23}
OW1	0.0248 (10)	0.0236 (10)	0.0246 (10)	0.0013 (8)	0.0114 (8)	-0.0030 (8)
OW2	0.0130 (9)	0.0193 (9)	0.0394 (12)	-0.0022 (8)	-0.0019 (8)	0.0144 (8)
OW3	0.0211 (10)	0.0208 (9)	0.0218 (10)	-0.0004 (8)	0.0019 (8)	-0.0010 (8)
OW4	0.0354 (12)	0.0274 (11)	0.0349 (12)	-0.0050 (10)	0.0102 (10)	0.0050 (9)
OW5	0.0270 (11)	0.0176 (9)	0.0343 (11)	-0.0025 (8)	-0.0046 (9)	0.0022 (9)
C11	0.0078 (11)	0.0104 (10)	0.0138 (11)	-0.0012 (9)	-0.0008 (9)	-0.0032 (9)
C12	0.0066 (11)	0.0135 (11)	0.0143 (12)	-0.0022 (9)	0.0000 (9)	-0.0007 (9)
C13	0.0112 (11)	0.0085 (10)	0.0171 (12)	-0.0003 (9)	-0.0018 (9)	0.0011 (9)
C14	0.0086 (11)	0.0113 (10)	0.0139 (11)	0.0015 (9)	-0.0025 (9)	-0.0015 (9)
C15	0.0108 (11)	0.0108 (10)	0.0140 (12)	-0.0002 (9)	-0.0006 (9)	-0.0005 (9)
015	0.0098 (8)	0.0089 (7)	0.0133 (8)	0.0001 (6)	0.0020 (6)	-0.0003 (7)
O12	0.0097 (8)	0.0133 (8)	0.0149 (9)	0.0010 (7)	-0.0055 (6)	0.0006 (7)
013	0.0251 (9)	0.0082 (8)	0.0185 (9)	0.0040 (7)	0.0017 (7)	0.0012 (7)
O14	0.0131 (8)	0.0163 (8)	0.0164 (9)	0.0063 (7)	-0.0006 (7)	-0.0047 (7)
C16	0.0241 (14)	0.0176 (12)	0.0172 (13)	0.0002 (10)	0.0075 (10)	0.0026 (10)
C21	0.0104 (12)	0.0126 (11)	0.0179 (12)	0.0031 (9)	0.0032 (9)	0.0022 (10)
C22	0.0080 (11)	0.0083 (10)	0.0161 (12)	0.0034 (9)	0.0009 (9)	-0.0015 (9)
O22	0.0055 (8)	0.0099 (7)	0.0156 (8)	0.0017 (6)	-0.0012 (6)	0.0010 (6)
C23	0.0092 (11)	0.0120 (11)	0.0100 (11)	0.0023 (9)	0.0003 (8)	0.0011 (9)
C24	0.0054 (10)	0.0154 (11)	0.0154 (11)	0.0028 (9)	0.0014 (9)	-0.0010 (10)
C25	0.0100 (11)	0.0196 (12)	0.0139 (12)	0.0027 (10)	-0.0010 (9)	0.0000 (10)
O23	0.0088 (8)	0.0131 (8)	0.0113 (8)	0.0038 (6)	0.0016 (6)	0.0013 (7)
O24	0.0084 (8)	0.0199 (9)	0.0167 (9)	-0.0017 (7)	0.0007 (6)	0.0043 (7)
O25	0.0124 (8)	0.0204 (9)	0.0123 (8)	0.0013 (7)	0.0018 (6)	-0.0015 (7)
C26	0.0146 (13)	0.0365 (15)	0.0163 (13)	-0.0014 (11)	-0.0014 (10)	-0.0060 (12)
O27	0.0161 (9)	0.0126 (8)	0.0199 (9)	0.0052 (7)	0.0050 (7)	0.0070 (7)
C27	0.0283 (15)	0.0270 (14)	0.0291 (15)	0.0056 (12)	0.0082 (12)	0.0162 (12)

Acta Cryst. (2012). E68, o2221-o2222

supplementary materials

C31	0.0073 (10)	0.0126 (10)	0.0128 (11)	0.0009 (9)	-0.0004(8)	-0.0017 (9)
C32	0.0092 (11)	0.0102 (10)	0.0131 (11)	-0.0006 (9)	-0.0004 (9)	-0.0008 (9)
C33	0.0118 (11)	0.0079 (10)	0.0124 (11)	0.0010 (9)	0.0030 (9)	0.0017 (9)
C34	0.0101 (11)	0.0097 (10)	0.0123 (11)	0.0004 (9)	-0.0003 (9)	-0.0017 (9)
C35	0.0074 (11)	0.0118 (11)	0.0137 (12)	0.0013 (9)	-0.0005 (9)	-0.0012 (9)
035	0.0111 (8)	0.0106 (7)	0.0125 (8)	0.0002 (6)	-0.0015 (6)	0.0001 (6)
O32	0.0087 (8)	0.0153 (8)	0.0142 (8)	0.0009 (7)	0.0029 (6)	0.0009 (7)
O33	0.0105 (8)	0.0141 (8)	0.0142 (8)	0.0013 (7)	-0.0024 (6)	0.0036 (7)
O34	0.0103 (8)	0.0193 (9)	0.0165 (9)	0.0017 (7)	-0.0022 (7)	0.0008 (7)
C36	0.0204 (13)	0.0152 (12)	0.0201 (13)	-0.0065 (10)	0.0006 (10)	-0.0002 (10)

Geometric parameters (Å, °)

OW1—H101	0.875 (15)	C23—O23	1.432 (3)	
OW1—H102	0.879 (15)	C23—C24	1.517 (3)	
OW2—H201	0.871 (15)	C23—H23	1.0000	
OW2—H202	0.869 (15)	C24—O24	1.426 (3)	
OW3—H301	0.878 (14)	C24—C25	1.510 (3)	
OW3—H302	0.877 (14)	C24—H24	1.0000	
OW4—H401	0.883 (15)	C25—O25	1.442 (3)	
OW4—H402	0.883 (15)	C25—C26	1.504 (3)	
OW5—H501	0.867 (15)	C25—H25	1.0000	
OW5—H502	0.873 (14)	O23—C31	1.400 (3)	
C11—O15	1.409 (3)	O24—H24A	0.8400	
C11—O22	1.412 (3)	C26—H26A	0.9800	
C11—C12	1.519 (3)	C26—H26B	0.9800	
C11—H11	1.0000	C26—H26C	0.9800	
C12—O12	1.429 (3)	O27—C27	1.428 (3)	
C12—C13	1.519 (3)	C27—H27A	0.9800	
C12—H12	1.0000	C27—H27B	0.9800	
C13—O13	1.435 (3)	C27—H27C	0.9800	
C13—C14	1.507 (3)	C31—O35	1.423 (3)	
С13—Н13	1.0000	C31—C32	1.512 (3)	
C14—O14	1.417 (3)	C31—H31	1.0000	
C14—C15	1.532 (3)	C32—O32	1.429 (3)	
C14—H14	1.0000	C32—C33	1.519 (3)	
C15—O15	1.451 (3)	С32—Н32	1.0000	
C15—C16	1.507 (3)	C33—O33	1.419 (3)	
C15—H15	1.0000	C33—C34	1.529 (3)	
O12—H12A	0.8400	С33—Н33	1.0000	
O13—H13A	0.8400	C34—O34	1.419 (3)	
O14—H14A	0.8400	C34—C35	1.527 (3)	
C16—H16A	0.9800	C34—H34	1.0000	
C16—H16B	0.9800	C35—O35	1.451 (3)	
C16—H16C	0.9800	C35—C36	1.505 (3)	
C21—O27	1.405 (3)	С35—Н35	1.0000	
C21—O25	1.419 (3)	O32—H32A	0.8400	
C21—C22	1.521 (3)	O33—H33A	0.8400	
C21—H21	1.0000	O34—H34A	0.8400	
C22—O22	1.434 (3)	C36—H36A	0.9800	

C22—C23	1.525 (3)	С36—Н36В	0.9800
C22—H22	1.0000	C36—H36C	0.9800
H101—OW1—H102	106 (2)	C25—C24—C23	107.07 (19)
H201—OW2—H202	109 (2)	O24—C24—H24	110.2
H301—OW3—H302	107 (2)	C25—C24—H24	110.2
H401—OW4—H402	100(2)	C23—C24—H24	110.2
H501—OW5—H502	111 (2)	O25—C25—C26	108.12 (19)
015-011-022	113.08 (18)	025-C25-C24	108.40(17)
015-011-012	110.89 (18)	C_{26} C_{25} C_{24}	113.5 (2)
022-C11-C12	108.63 (17)	O25—C25—H25	108.9
015—C11—H11	108.0	C26—C25—H25	108.9
022—C11—H11	108.0	C_{24} C_{25} H_{25}	108.9
C12—C11—H11	108.0	$C_{31} - O_{23} - C_{23}$	112.64 (17)
012 - C12 - C13	111 41 (18)	$C_{24} - O_{24} - H_{24A}$	109 5
012 - 012 - 013	104 15 (17)	$C_{21} = 0.25 = 0.25$	114 75 (17)
C_{13} C_{12} C_{11}	109.73(18)	C_{25} C_{26} H_{26A}	109 5
012 - C12 - H12	110 5	$C_{25} = C_{26} = H_{26}B$	109.5
$C_{12} = C_{12} = H_{12}$	110.5	$H_{26} = C_{26} = H_{26} = H_{26}$	109.5
C_{11} C_{12} H_{12}	110.5	C_{25} C_{26} H_{26C}	109.5
013-013-014	110.0 (19)	$H_{26} = C_{26} = H_{26} = H_{26}$	109.5
013 C13 C12	108.14(18)	H26B C26 H26C	109.5
$C_{14} = C_{13} = C_{12}$	100.14(10) 100.04(10)	$C_{21} = C_{20} = C$	109.5 111.02 (10)
C14 - C13 - C12	109.94 (19)	$C_{21} = C_{27} = C_{27}$	100.5
C_{14} C_{13} H_{13}	109.3	027 - 027 - 1127A	109.5
$C_{14} = C_{13} = 1113$	109.3	$H_{27A} = C_{27} = H_{27B}$	109.5
C12 - C13 - H13	109.5 100.52(18)	$n_2/A = C_2/= n_2/B$	109.5
014 - 014 - 015	109.33(18) 100.00(18)	$U_2 / - U_2 / - U_2 / C$	109.5
C_{12} C_{14} C_{15}	109.00(18) 100.04(10)	$H_2/A = C_2/=H_2/C$	109.5
C13 - C14 - C13	109.94 (19)	$H_2/B = C_2/=H_2/C$	109.3
O14 - C14 - H14	109.5	023 - 031 - 033	111.35 (18)
C15 - C14 - H14	109.5	025 - 021 - 022	108.77(18)
C13-C14-H14	109.5	033 - 031 - 032	110.42 (18)
015 - 015 - 016	100.72(19)	025 C21 H21	108.7
013 - 015 - 014	109.51(17)	035—C31—H31	108.7
C16-C15-C14	112.6 (2)	C32—C31—H31	108.7
015—C15—H15	109.3	032 - 032 - 031	109.59 (18)
C16—C15—H15	109.3	032 - 032 - 033	112.85 (18)
C14—C15—H15	109.3	$C_{31} - C_{32} - C_{33}$	109.72 (18)
CII_015_CI5	114.07 (17)	O32—C32—H32	108.2
C12—012—H12A	109.5	С31—С32—Н32	108.2
С13—013—Н13А	109.5	С33—С32—Н32	108.2
C14—O14—H14A	109.5	033-C33-C32	109.45 (18)
C15—C16—H16A	109.5	033-C33-C34	112.62 (18)
C15—C16—H16B	109.5	C32—C33—C34	110.77 (18)
H16A—C16—H16B	109.5	O33—C33—H33	107.9
C15—C16—H16C	109.5	C32—C33—H33	107.9
H16A—C16—H16C	109.5	C34—C33—H33	107.9
H16B—C16—H16C	109.5	O34—C34—C35	111.48 (18)
O27—C21—O25	112.73 (18)	O34—C34—C33	108.79 (18)

O27—C21—C22	107.14 (19)	C35—C34—C33	109.19 (17)
O25—C21—C22	112.34 (19)	O34—C34—H34	109.1
O27—C21—H21	108.2	C35—C34—H34	109.1
O25—C21—H21	108.2	C33—C34—H34	109.1
C22—C21—H21	108.2	O35—C35—C36	107.24 (18)
O22—C22—C21	110.84 (18)	O35—C35—C34	108.53 (18)
O22—C22—C23	108.53 (17)	C36—C35—C34	113.29 (19)
C21—C22—C23	109.54 (18)	O35—C35—H35	109.2
O22—C22—H22	109.3	С36—С35—Н35	109.2
C21—C22—H22	109.3	С34—С35—Н35	109.2
С23—С22—Н22	109.3	C31—O35—C35	113.29 (16)
C11—O22—C22	113.20 (16)	C32—O32—H32A	109.5
O23—C23—C24	110.01 (18)	С33—О33—Н33А	109.5
O23—C23—C22	111.45 (17)	C34—O34—H34A	109.5
C24—C23—C22	110.88 (18)	С35—С36—Н36А	109.5
O23—C23—H23	108.1	С35—С36—Н36В	109.5
C24—C23—H23	108.1	H36A—C36—H36B	109.5
С22—С23—Н23	108.1	C35—C36—H36C	109.5
024 - C24 - C25	108 90 (17)	H36A—C36—H36C	109.5
024 - 024 - 023	110.37(18)	H36B-C36-H36C	109.5
024 024 025	110.37 (10)	11500 050 11500	109.5
015-011-012-012	63 1 (2)	$C^{22} - C^{23} - C^{24} - C^{25}$	-604(2)
013 - 012 - 012 022 - 011 - 012 - 012	-172.08(17)	024 024 025 025	-17852(18)
022 - C11 - C12 - O12	-56.3(2)	$C_{24} = C_{24} = C_{25} = C_{25}$	170.32(10)
013 - 011 - 012 - 013	50.5(2)	$C_{23} - C_{24} - C_{23} - C_{23}$	-584(3)
012 - 012 - 013 - 013	62.0(2)	$C_{24} = C_{24} = C_{25} = C_{26}$	-17772(10)
C_{11} C_{12} C_{13} C_{13} C_{13}	02.0(2)	$C_{23} = C_{24} = C_{23} = C_{20}$	-1/7.72(19)
CII = CI2 = CI3 = OI3	1/0.82 (1/)	$C_{24} = C_{23} = 0_{23} = C_{31}$	-113.0(2)
012 - 012 - 013 - 014	-59.2(2)	$C_{22} = C_{23} = C_{23} = C_{31}$	122.95 (19)
CII = CI2 = CI3 = CI4	55.0 (2)	027 - 021 - 025 - 025	-65.9 (2)
013-013-014	64.7(2)	$C_{22} = C_{21} = O_{25} = C_{25}$	55.2 (2)
C12—C13—C14—O14	-175.75 (17)	C26—C25—O25—C21	174.83 (19)
013-013-014-015	-1/5.54 (17)	C24—C25—O25—C21	-61.7 (2)
C12—C13—C14—C15	-56.0 (2)	O25—C21—O27—C27	-72.3 (2)
O14—C14—C15—O15	176.01 (17)	C22—C21—O27—C27	163.6 (2)
C13—C14—C15—O15	55.9 (2)	C23—O23—C31—O35	-76.1 (2)
O14—C14—C15—C16	-65.4 (2)	C23—O23—C31—C32	162.03 (16)
C13—C14—C15—C16	174.51 (19)	O23—C31—C32—O32	-169.04 (17)
O22—C11—O15—C15	-63.2 (2)	O35—C31—C32—O32	68.5 (2)
C12—C11—O15—C15	59.1 (2)	O23—C31—C32—C33	66.5 (2)
C16—C15—O15—C11	179.25 (18)	O35—C31—C32—C33	-55.9 (2)
C14-C15-O15-C11	-58.6 (2)	O32—C32—C33—O33	56.2 (2)
O27—C21—C22—O22	-165.21 (16)	C31—C32—C33—O33	178.75 (18)
O25—C21—C22—O22	70.5 (2)	O32—C32—C33—C34	-68.5 (2)
O27—C21—C22—C23	75.1 (2)	C31—C32—C33—C34	54.0 (2)
O25—C21—C22—C23	-49.3 (2)	O33—C33—C34—O34	59.9 (2)
O15—C11—O22—C22	-72.0 (2)	C32—C33—C34—O34	-177.17 (18)
C12—C11—O22—C22	164.44 (18)	O33—C33—C34—C35	-178.26 (18)
C21—C22—O22—C11	91.8 (2)	C32—C33—C34—C35	-55.3 (2)
C23—C22—O22—C11	-147.87 (18)	O34—C34—C35—O35	177.68 (17)

supplementary materials

O22—C22—C23—O23	55.3 (2)	C33—C34—C35—O35	57.5 (2)
C21—C22—C23—O23	176.42 (18)	O34—C34—C35—C36	-63.3 (2)
O22—C22—C23—C24	-67.6 (2)	C33—C34—C35—C36	176.44 (19)
C21—C22—C23—C24	53.5 (2)	O23—C31—O35—C35	-59.2 (2)
O23—C23—C24—O24	57.5 (2)	C32—C31—O35—C35	61.8 (2)
C22—C23—C24—O24	-178.80 (17)	C36—C35—O35—C31	174.92 (19)
O23—C23—C24—C25	175.84 (17)	C34—C35—O35—C31	-62.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
OW1—H101···O33 ⁱ	0.88 (3)	1.85 (3)	2.726 (2)	176 (2)
OW1—H102…OW3 ⁱⁱ	0.88 (3)	1.95 (3)	2.802 (2)	162 (2)
OW1—H102···O32 ⁱⁱⁱ	0.88 (3)	2.55 (3)	2.976 (2)	110 (2)
OW2—H201…O12 ^{iv}	0.88 (3)	2.03 (3)	2.875 (2)	163 (2)
OW2—H202…O35 ⁱⁱ	0.87 (3)	2.08 (3)	2.877 (2)	153 (2)
OW3—H301…OW5	0.88 (3)	2.04 (3)	2.845 (2)	151 (2)
OW3—H302…O13 ^v	0.88 (3)	1.96 (3)	2.836 (2)	176 (2)
OW4—H401…OW3	0.88 (3)	1.97 (3)	2.840 (2)	168 (2)
OW4—H402…OW1	0.88 (3)	1.92 (3)	2.771 (2)	160 (2)
OW5—H501…O33 ^{vi}	0.87 (3)	2.07 (3)	2.918 (2)	168 (2)
OW5—H502····OW5 ^{vii}	0.87 (3)	2.50 (3)	3.333 (2)	159 (2)
O12—H12A···O32 ⁱⁱⁱ	0.84	2.01	2.767 (2)	149
O13—H13A···O15 ⁱⁱ	0.84	2.10	2.858 (2)	149
O14—H14 <i>A</i> ···O24 ⁱⁱⁱ	0.84	1.95	2.733 (2)	157
O24—H24 <i>A</i> ···O <i>W</i> 2	0.84	1.88	2.722 (2)	176
O32—H32A···OW5 ^{viii}	0.84	2.13	2.864 (2)	146
O33—H33 <i>A</i> ···O34 ⁱ	0.84	1.91	2.684 (2)	152
O34—H34 <i>A</i> ···O <i>W</i> 4	0.84	1.86	2.687 (2)	168

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*+1/2, *y*-1/2, *z*; (iv) *x*-1/2, *y*-1/2, *z*; (v) *x*, *y*+1, *z*; (vi) *x*+1/2, *y*+1/2, *z*; (vii) -*x*+2, *y*, -*z*+1; (viii) *x*-1/2, *y*+1/2, *z*.